Compressible Magnetohydrodynamic Turbulence in the Earth's Magnetosheath: Estimation of the Energy Cascade Rate Using in situ Spacecraft Data.
نویسندگان
چکیده
The first estimation of the energy cascade rate |ε_{C}| of magnetosheath turbulence is obtained using the Cluster and THEMIS spacecraft data and an exact law of compressible isothermal magnetohydrodynamics turbulence. The mean value of |ε_{C}| is found to be close to 10^{-13} J m^{-3} s^{-1}, at least 2 orders of magnitude larger than its value in the solar wind (∼10^{-16} J m^{-3} s^{-1} in the fast wind). Two types of turbulence are evidenced and shown to be dominated either by incompressible Alfvénic or compressible magnetosoniclike fluctuations. Density fluctuations are shown to amplify the cascade rate and its spatial anisotropy in comparison with incompressible Alfvénic turbulence. Furthermore, for compressible magnetosonic fluctuations, large cascade rates are found to lie mostly near the linear kinetic instability of the mirror mode. New empirical power-laws relating |ε_{C}| to the turbulent Mach number and to the internal energy are evidenced. These new findings have potential applications in distant astrophysical plasmas that are not accessible to in situ measurements.
منابع مشابه
Comment on "Scaling laws of turbulence and heating of fast solar wind: the role of density fluctuations".
Incompressible and isotropic magnetohydrodynamic turbulence in plasmas can be described by an exact relation for the energy flux through the scales. This Yaglom-like scaling law has been recently observed in the solar wind above the solar poles observed by the Ulysses spacecraft, where the turbulence is in an Alfvénic state. An analogous phenomenological scaling law, suitably modified to take i...
متن کاملNumerical Investigation on Compressible Flow Characteristics in Axial Compressors Using a Multi Block Finite Volume Scheme
An unsteady two-dimensional numerical investigation was performed on the viscous flow passing through a multi-blade cascade. A Cartesian finite-volume approach was employed and it was linked to Van-Leer's and Roe's flux splitting schemes to evaluate inviscid flux terms. To prevent the oscillatory behavior of numerical results and to increase the accuracy, Monotonic Upstream Scheme for Conservat...
متن کاملStatistical properties of compressible hydrodynamic and magnetohydrodynamic turbulence
In this work, statistical properties of compressible hydrodynamic and magnetohydrodynamic turbulence are studied using direct numerical simulations. The properties of turbulent flows change when average flow velocities within the turbulence exceed the speed of sound in the medium. High flow velocities lead to the formation of shocks, and some of the base assumptions of turbulence theories of in...
متن کاملThe Turbulent Magnetohydrodynamic Cascade: Applications of Third-Moment Theory to the Solar Wind at 1 AU
Velocity and magnetic field fluctuations in the solar wind show evidence that non-linear turbulent dynamics are present in the interplanetary medium. The cascade of energy created by these turbulent processes may provide a mechanism for in situ heating of the solar wind plasma. We perform three studies analyzing the turbulent energy cascade at 1AU using 10 years of data from the Advanced Compos...
متن کاملImpact of Hall effect on energy decay in magnetohydrodynamic turbulence
[1] We examine numerically the influence of Hall effect corrections to Ohm’s law upon the decay of homogeneous compressible magnetohydrodynamic turbulence and conclude that there are no significant differences in global decay rate associated with the Hall effect. This affirms expectations that energy decay is controlled by the large-scale eddies.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 120 5 شماره
صفحات -
تاریخ انتشار 2018